RI 9030

L 2030

Bureau of Mines Report of Investigations/1986

Correlating Abrasive Wear to Alloy Additions in Low-Alloy Steels

By J. H. Tylczak

UNITED STATES. DEPARTMENT OF THE INTERIOR

Report of Investigations 9030

Correlating Abrasive Wear to Alloy Additions in Low-Alloy Steels

By J. H. Tylczak

UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary

BUREAU OF MINES Robert C. Horton, Director

Library of Congress Cataloging in Publication Data:

	. (Joseph H.) abrasive wear to	alloy additions in lov	w-alloy steels.
(Report of inves 9030)	tigations/United Stat	es Department of the Int	erior, Bureau of Mines
Bibliography: p.	10.		
Supt. of Docs. n	o.: I 28.23:9030.		
1. Mining machi Mechanical wear– States. Bureau of	Testing. 6 Abrasives.	nery. 3. Alloy steels. 4. A I. Title. II. Series: Report	lloys–Impact testing. 5 of investigations (United
TN23.U43	[TN345]	622 s [622'.2]	86-600081

CONTENTS

Abstract	1
Introduction	2
Experimental procedure	2
Test procedure	2
Specimens	2
Analysis techniques	4
Results	6
General	6
Analysis including all samples	5
Analysis of hardened steels	8
Analysis of unhardened steels	9
Effect of chromium	9
Conclusion	9
References	10
Appendix A	11
Appendix B	13
Appendix been been been been been been been bee	1.7

ILLUSTRATIONS

1.	Dry-sand, rubber-wheel abrasion test machine	3
2.	Subangular quartzitic sand, minus 50 plus 70 mesh (X 100)	3
3.	Fully hardened martensitic steel sample 30 (X 1,500)	7
4.	Fully hardened martensitic steel sample 35 (X 1,500)	7
5.	Sample 36 showing fully pearlitic structure (X 1,900)	7
6.	Sample 1 showing ferritic structure of pure iron (X 100)	7
7.	Effect of hardness and carbon on wear	8
8.	Effect of chromium on wear resistance of hardened low-alloy steels	9

TABLES

1.	Analysis of test materials	4
2.	Dry-sand, rubber-wheel abrasion test data	5
A-1.	Heat treatment and structure of test materials	11
B-1.	Example data for self-directed optimization	13
B-2.	Second iteration from sample optimization example	14
B-3.	Third iteration from sample optimization example	14

Page

	UNIT OF MEASURE ABBREVIATIONS	USED IN THIS	REPORT
°C	degree Celsius	m	meter
cm	centimeter	min	minute
h	hcur	mm ³	cubic millimeter
HRA	Rockwell hardness, A scale	Ν	Newton
HRC	Rockwell hardness, C scale	pct	percent
ΗV	Vickers hardness	wt pct	weight percent
kg	kilogram		

CORRELATING ABRASIVE WEAR TO ALLOY ADDITIONS IN LOW-ALLOY STEELS

By J. H. Tylczak¹

ABSTRACT

The Bureau of Mines studied the effect of alloy additions on abrasive wear of low-alloy steels. A dry-sand, rubber-wheel abrasion test apparatus using ASTM G65-81 procedure B was used for the abrasive wear tests. Eighty-six material heat-treatment combinations were abrasion tested. Results of these tests were analyzed statistically using regression analysis to see if additions of Cr. Mn. Mo. Ni, Si, Al, Cu. and S were significant in affecting the abrasive wear rate of low-alloy steels. Regression analysis was also used to confirm hardness and C affect on the abrasive wear rate of these steels. It was found that for all the steels taken as a group, increased amounts of Mn significantly reduced the wear rate, while increased amounts of Mo and Si increased the wear rate. Analysis also confirmed previous research done by others, that increasing hardness and amounts of C reduced the wear rate. For the hardened steels taken as a class, only increasing amounts of C and Mn reduced the wear rate, while increases in Si increased the wear rate. In the class of unhardened steels, increases in C, Mn, and S reduced the wear rate, whereas increases in Mo increased the wear rate. The steels with the best resistance to wear were two hardened experimental steels similar to AISI 1055 and AISI 1078.

¹Metallurgist, Albany Research Center, Bureau of Mines, Albany, OR.

Low-alloy steels are inexpensive materials widely used in ore transport and mineral-processing equipment, such as ore chutes, truck beds, and bin walls. A simulation for the field condition of loose ore flowing over steel is the use of the well-known dry-sand, rubber-wheel abrasion test, in which loose sand abrades a test specimen. This test has become an ASTM standard $(1)^2$ for abrasive wear and was used for this work.

Research was designed to determine the effect of different alloy additions on sliding abrasive wear of low-alloy steels, and to optimize the composition of two types of low-alloy steels: one type with low (<0.3 pct C) carbon level to make it more easily weldable, and another type without a carbon limit. Other alloying additions investigated were Cr, Mn, Mo, Ni, Si, Al, S, and Cu. Whether or not chromium is useful in providing wear resistance in low-alloy steels was of particular interest because of U.S. dependence on imports for this strategic metal.

Most prior work in abrasive wear has been limited to studying variables indi-Research has established vidually. the effect of some of the variables studied. Khrushchov (2-3), using a pin-on-abrasive cloth test machine, documented that hardness affects wear. Larsen-Badse (4), using a similar machine, showed that wear resistance was proportional to material hardness and work hardening rate. Carbon has long been shown to affect wear. Haworth (5) reported in 1949 that carbon was the most important alloying element for abrasion resistance. Moore (6) found a square-root relationship of weight percent carbon with wear resistance in martensitic steels. Grinberg, Livshits, and Shcherbakova (7) studied the affect of Cr, W, and V. They found that increasing the amount of these elements, up to 5.9 Cr, 2.2 W, and 2.7 V, in ferrite did not increase the wear resistance for fully annealed steels.

The present work extends these past efforts to a multiple-variable study of abrasive wear.

EXPERIMENTAL PROCEDURE

TEST PROCEDURE

Abrasion tests were conducted on a drysand, rubber-wheel abrasion test apparatus in accordance with ASTM G65-81, procedure B. This test (fig. 1) consists cf a rubber-coated wheel, a test specimen mounted on a pivoting load arm, and a sand nozzle that produces a sand curtain between the specimen and the rubber wheel. The sand used was AFS 50/70 test sand, shown in figure 2. This is a subangular quartzitic sand with 90 pct between 50 and 70 mesh (U.S. sieve sizes). The sand, acting as an abrasive, flows into the specimen-wheel interface. The wheel rotates against the specimen for a distance of 1,436 m with a force of 130 N. Specimens are weighed before and after the test. The weight loss is

²Underlined numbers in parentheses refer to items in the list of references preceding the appendixes. divided by the sample density to obtain its volume loss.

SPEC IMENS

Test specimens included commercially purchased and laboratory-melted steels. Table 1 lists the analyzed composition and calculated carbon equivalents for the 43 steels investigated. The carbon contents ranged from 0 to 1.53 wt pct; the other alloying elements (Cr, Mn, Mo, Ni, Si, Al, Cu, and S) were within normally accepted ranges for low-alloy steels. Because the weldability of low-alloy steels is often of concern, calculations were made of the carbon equivalence (CE) (8), which is used to predict the susceptibility to cracking in the heat-affected zone. The CE values included in table 1 were calculated from the equation

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15} + \frac{Si}{24}, \quad (1)$$

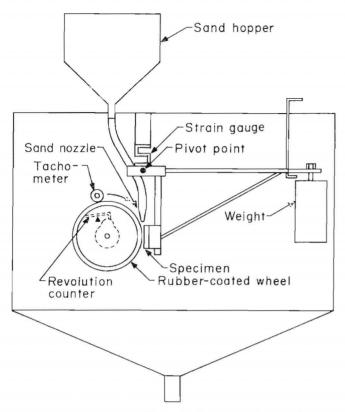


FIGURE 1.- Dry-sand, rubber-wheel abrasion test machine.

where elements are in weight percent. Because carbon is the most significant element in this equation, an attempt was made to develop a low-wear steel with a carbon limit set at 0.30 wt pct, rather than control CE to a set limit.

The laboratory-produced steels were melted in a 2-kg vacuum induction furnace or as 20-kg heats in an air induction furnace. These were initially hot forged, then hot rolled at a temperature of 1,100° C, with 25- to 30-pct reduction on each pass to a final thickness of 1.52 cm.

The specimens were fabricated into 2.5by 7.6- by 1.3-cm bars and heattreated as required. Appendix table A-1 lists heat-treatment temperatures and the microstructures obtained. The steels were heated to around 860° C, based on similar alloys found in the Alloy Digest (9), held for 45 to 75 min, and quenched. The quenching media and resulting hardnesses are presented in table 2. It proved necessary to temper several of the steels after quenching because of their tendency to crack; the temper used was 1 h at

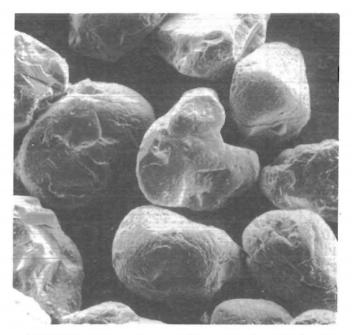


FIGURE 2.—Subangular quartzitic sand, minus 50 plus 70 mesh (X 100).

 200° C. After this heat treatment, the 2.5- by 7.6-cm surfaces were wet surface ground to 1.3 cm thick by removing equal amounts of material from each side.

Hardness measurements were taken on the specimen surface and in the bottom of the wear scar with a Rockwell hardness tester using the A or C scale. These values, which are listed in appendix table A-1, were converted to Vickers hardness, using ASTM E140-79 (10) conversion tables, to provide a continuous linear scale. The unhardened steels were typically 10 Vickers points harder in the wear scar than on the nonworn surface because of work hardening caused by abrasion testing. In this case, the hardness in the scar was used as the specimen hardness because work hardening presumably occurred during the entire test over the entire volume of material removed. For the hardened steels, work hardening was negligible. But if the hardenability was so low that the hardness was substantially lower in the bottom of the wear scar than it was on the unworn surface, a correction was made. To approximate the mean hardness of the volume removed, the wear value used was a weighted average of threequarters of the surface hardness plus one-quarter of the hardness at the bottom of the wear scar.

TABLE 1 Analysis	of	test	materials
------------------	----	------	-----------

Sam-	Alloy				Analy	sis, w	t pct				CE ¹
ple		С	Cr	Mn	Mo	Ni	Si	Al	Cu	S	
1	Ferro Vac. E	0.0	0.05	0.0	0.0	0.05	0.0	0.0	0.0	0.0	0.01
2	Cor 99	.01	.00	.06	.00	.03	.02	<.01	.00	.013	.03
3	Experimental steel	.09	1.12	.12	.09	.08	.19	.35	.02	.003	.36
4	do	.12	.93	.14	<.05	<.01	.23	.51	.02	.002	.35
5	do	.16	.26	<.01	.02	.11	.05	.04	.22	.027	.24
6	do	.17	.96	.35	<.05	.05	1.05	.65	.38	.009	.50
7	AISI 1018	.18	.08	.43	.04	.15	.09	<.02	.34	.039	.31
8	AISI 4620	.18	.20	.54	.21	1.71	.27	.04	.15	.016	.50
9	USS "T1"	.19	.50	1.33	.23	.20	.25	.02	.17	.030	57 ه
10	USS "T1", Type B	.19	.51	.88	.12	.08	.30	.03	.02	.013	.48
11	Experimental steel	.20	1.3	1.05	.08	.21	1.97	.07	.01	.011	.75
12	AISI 8620	.20	.43	.67	.13	.42	.27	.03	<.04	.019	.48
13	Experimental steel	.21	>1.35	.08	.09	.51	38 ،	.17	<.01	.003	.69
14	do	.21	.11	.47	.06	.15	<.05	.43	.01	.028	.33
15	do	.21	.11	.48	.07	.14	1.78	1.44	.36	.032	.43
16	do	.23	1.37	.25	.08	.34	.12	.68	.35	.022	.61
17	do	.23	2.0	.45	.06	.24	.05	.06	.29		.75
18	do	.27	1.64	.95	.04	.15	.14	.12	.36	.035	.80
19	do	.28	.11	.49	<.01	.15	1.32	.06	.39		.52
20	do	.31	.85	.08	<.01	.08	.38	>.25	<.01	.002	.52
21	REM 500	.33	.98	.61	.20	.14	.38	.03	.16	.004	.70
22	Experimental steel	.37	.44	.24	<.01	.28	<.01	.068	.23		.52
23	AISI 4340	.40	.79	.71	.27	1.76	.27	<.02	.05	.009	.86
24	AISI 4342	.42	.81	.80	.22	1.93	.32	.026	.09	.018	.91
25	AISI 8740	.42	.50	.93	.21	.43	.28	.02	.15	.024	.77
26	AISI 1340	.43	.02	1.93	.02	.05	.24	.01	.04	.022	.78
27	AISI 4142	.44	1.05	.83	.12	<.1	.27	.055	<.04		.83
28	Experimental steel	.49	.27	.67	.00	.16	.17	.01	.21	.023	.69
29	AISI 6150	.51	1.08	.83	.04	.16	.29	.02	.08	.012	.90
30	Experimental steel	.54	.28	.80	.03	.10	<.01	.03	.32	.024	.76
31	AISI 1060	.59	<.1	.53	<.1	.13	.18	<.02	22ء	.026	.73
32	Experimental steel	.60	.01	.01	<.01	.12	.02	.073	<.01	.016	.61
33	AISI 5160	.61	.80	.76	<.1	.11	.24	<.02	.12	.032	.93
34	Omegalloy 61	.85	<.1	.40	<.1	<.1	<.01	NA	<.04	NA	.94
35	Experimental steel	.87	.17	.55	.03	.06	<.02	<.02	.29		1.03
36	do	.90	.37	.97	.11	.11	.18	.03	.38	.024)
37	Experimental steel	.92	.05	.02	<.01	.33	.04	.14	<.01	.021	.93
38	do	.93	1.30	.43	<.01	.03	.69	.08	.05	.023	
39	do	.94	.83	.04	.01	.30	.07	.19	.04	.020	
40	do	.96	.79	.17	.03	.28	<.01	.37	.18	.023	
41	AISI 52100	1.05	1.7	.34	.06	.18	.26	<.02	.12	.016	
42	W1	1.07	<.1	.30	<.1	<.1	.20	.04	<.04	.008	
43	Experimental steel	1.52	.05	.38	<.05	.08	<.05	<.05	.28	.025	1.63

NA Not available.

¹Carbon equivalency.

The steels also were examined metallographically for differences in microstructure that might explain the differences in wear. (Typical grain size was found to be finer than ASTM grain size 8.)

ANALYSIS TECHNIQUES

The effect of element additions and hardness on wear of each specimen were analyzed by a multiple linear regression (MLR) program. The MLR program produced

TABLE 2	- Dry-sand,	rubber-wheel	abrasive	test	data	
---------	-------------	--------------	----------	------	------	--

G	41.1		Hardness,	DSRWAT ¹	Coefficient				Hardness,	DSRWAT 1	Coefficient
Sample	Alloy	Condition	HV	wear mm ³	variation, pct	Sample	Alloy	Condition	HV	wear mm ³	variation, pct
1	Ferro Vac. E	R	70	187.8	1.3	26	AISI 1340	R	269	57.3	0.04
2	Cor 99	R	93	166.0	1.5			WQ	640	38.5	5.3
3	Experimental steel	R	112	170.9	1.4	27	AISI 4142	A	172	95.0	5.0
4	do	R	116	155.6	2.6			R	192	86.7	1.3
5	do	R	118	148.7	4.3			OQ, T	556	44.3	1.3
6	do	R	159	120.3	2.3	28	Experimental steel	R R	214		
7	AISI 1018	R	139	129.6	.98	20	Experimental steel	WQ	653	64.4	1.5
8	AISI 4620	R	190	141.3	2.8	29	AISI 6150		the Construction	37.2	2.1
		A	135	134.6	2.0	29	A151 0150	A	192	80.4	3.8
		WO	426	76.2	2.0			R	346	83.0	2.4
9	USS "T1"	RQ	243	104.4	1.3	20		OQ	610	32.7	2.5
	000 11	WO	434	74.2		30	Experimental steel	R	216	52.6	3.7
10	USS "Tl", Type B	RQ	283	1. 113	3.1	21	1777 1070	WQ	718	24.1	1.3
11	Experimental steel			121.5	2.8	31	AISI 1060	A	176	84.3	6.1
11	Experimental sceet	R	346	99.4	.66			R	227	60.4	4.6
12	ATCT 9620	WQ, T	458	73.0	.5			WQ	708	32.1	3.4
12	AISI 8620	A	133	137.7	3.6	32	Experimental steel	R	170	75.3	7.8
		R	170	121.7	2.0			WQ	725	40.7	.82
1.2	P	WQ	434	67.6	2.7	33	AISI 5160	A	208	76.8	5.2
13	Experimental steel	R	322	110.6	2.7			R	306	51.3	8.4
		WQ	424	70.0	1.6			WQ	709	39.6	3.0
14	do	R	145	128.3	5.2	34	Omegalloy 61	RQ	801	29.8	5.3
15	do	R.	187	113.7	4.3	35	Experimental steel	R	312	40.5	1.9
16	do	R	170	95.3	4.5			WQ	842	24.1	.98
		WQ, T	423	74.4	2.6	36	do	R	346	36.2	.55
17	do	R	307	103.0	.06			00	817	25.2	1.4
		WQ	512	63.7	3.30	37	do	R	230	47.3	2.3
18	do	R	404	95.3	2.1			WQ	861	26.2	2.7
		WQ	513	60.5	4.2	38	do	R	384	37.3	1.3
19	do	R	212	119.5	1.7			00	820	32.1	3.0
		WQ	456	82.6	3.9	39	do	R	340	43.4	3.8
20	do	R	216	103.4	.93			00	766	33.8	.4
		WQ	453	60.8	6.4	40	do	R	333	38.8	4.7
21	REM 500	A	176	136.6	3.0			00	766	33.9	1000000
		RQ	505	64.6	2.3	41	AISI 52100	A	184		2.0
22	Experimental steel	WQ	511	47.8	.11		A101 92100		Location and	89.2	2.8
		R	148	97.6	.23	[R	346	39.3	1.35
23	AISI 4340	WQ	595	46.6	6.2	42	W1	OQ, T	720	35.2	4.7
		R	170	113.1	2.1	42	W1	R	158	99.9	3.3
24	AISI 4342	OQ	530	54.3	6.7			A	176	82.9	4.2
		R	184	102.4	2.1	1.2	P	WQ	800	29.1	2.5
25	AISI 8740	WQ	633	42.0	1.9	43	Experimental steel	R	298	47.5	.6
		A	165	97.0	1.9			WQ	832	28.3	5.7
		R		And Anna Anna Anna Anna Anna Anna Anna A	1471.7176						
		WQ	254	97.6	.4						
1-	nd. rubber-wheel abr	wv	591	39.4	4.5						

Dry-sand, rubber-wheel abrasion test.

NOTE.--A Annealed.

-A Annealed. R Hot rolled (assumed for purchased commercial steels). OQ Oil quenched. RQ Received in hardened condition. WQ Water quenched. T Tempered.

S.

6

F values that could be used in hypothesis testing to determine which of the independent factors were significant. Prior to running the MLR on the composition and wear results, the element additions and hardnesses were plotted versus wear. Using these plots, transformations were performed on carbon and hardness to linearize them with respect to wear. Inverse. natural-log, and square-root transformations were attempted. The transformed data were used along with the element additions that were not transformed for the MLR. The data also were separated into hardened and unhardened A MLR was run on the nine steels.

GENERAL

different Forty-three steels were tested. Because more than one heat treatment was used on many of the steels, 86 alloy heat-treatment combinations were evaluated. Table 2 shows the wear results. The range of wear loss was from 188 mm^3 to 24.1 mm³. The alloy with the least wear resistance was Ferro Vac E,³ which is pure vacuum-arc-melted iron having no alloy additions. The best wear resistance was shared by hardened experimental steels, samples 30 and 35. Sample 30 is similar to AISI 1055; sample 35 is similar to AISI 1078. Both have relatively high carbon levels, making them difficult to weld. Among the 19 commercial steels tested, sample 34, which is Omegalloy 61, and sample 42, which is tool steel W1, gave the lowest wear with values of 29.8 and 29.1 mm³, respectively. The best nonhardened steel was sample 36, an experimental high-carbon manganese steel with a wear of 36.2 mm. which was better than many of the hardened steels. Among the steels with carbon content limited to 0.30 wt pct, sample 18 had the least wear, 60.5 mm. However, the other elemental additions resulted in a CE of 0.80, which is rather high for a weldable alloy.

elements additions versus wear for these two conditions. The regression was performed by the forward stepwise method (11).

The optimization routine consisted of abrasion testing a variety of commercial low-alloy steels, then optimizing the composition through the rotating simplex method of optimization, or self-directing optimization (SDO) (12-13). The process was repeated with a new optimized alloy composition until the change in wear was judged insignificant for the new alloy compared with the wear data for the previous one. An example of this technique is given in appendix B.

RESULTS

The best wear resistance was obtained with alloys having a martensitic structure. Figures 3 and 4 show the microstructures of samples 30 and 35, which Other hardened are both martensitic. specimens that were almost as abrasion resistant, such as samples 31, 33, 38, and 41, showed a second phase, either pearlite or cementite. The microstructure of the best low-carbon steel, sample also was martensitic. The typical 18, microstructure of the nonhardened steels, as shown for sample 36 in figure 5, was fully pearlitic. In contrast, the alloy with the worst wear resistance, pure-iron Ferro Vac E, was ferritic, as shown in figure 6.

ANALYSIS INCLUDING ALL SAMPLES

Relationships between wear volume and alloying elements (C, Cr, Mn, Mo, Ni, Si, Al, Cu, and S) on hardness of each sample were analyzed statistically using MLR. Prior to the MLR analysis, hardness values were transformed to inverse hardness and carbon to the square root of carbon because these transformations gave the best linear correlation with wear. Hypothesis testing showed, with a 99.5pct confidence level, that alloying elements and hardness affected the wear. All individual factors also were tested for their significance. Inverse hardness and square root of the carbon level were found significant at the 99.5-pct

³Reference to specific products does not imply endorsement by the Bureau of Mines.

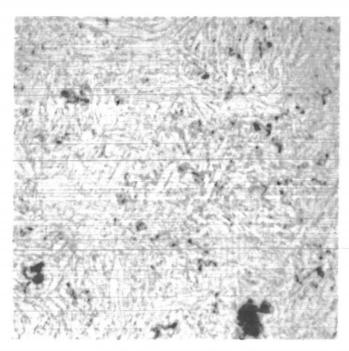


FIGURE 3.—Fully hardened martensitic steel sample 30 (X 1,500).

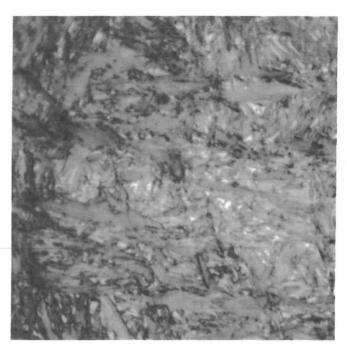


FIGURE 4.—Fully hardened martensitic steel sample 35 (X 1,500).

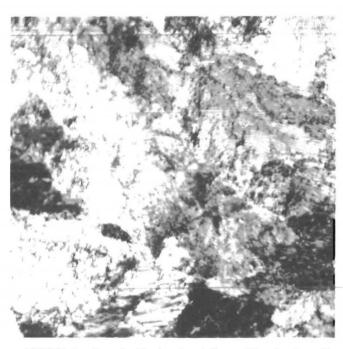


FIGURE 5.—Sample 36 showing fully perlitic structure (X 1,900).

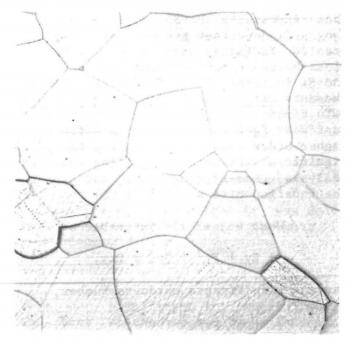


FIGURE 6.—Sample 1 showing ferritic structure of pure iron (X 100).

8

confidence level. Three elements (Mn, Mo, and Si) were significant at the 95pct confidence level; the other elements evaluated (Cr, Ni, Al, Cu, and S) did not show a significant effect on wear. Although dependent on carbon and other alloying additions, the justification for using hardness for an independent variable is that it is greatly affected by heat treatment. This is indicated by the correlation between inverse hardness and the square root of the carbon content, which was only 0.49.

The MLR program produced the following equation to predict wear (ASTM G65-81, procedure B):

Wear =
$$67 + 10,900(HV)^{-1} - 54(C)^{1/2}$$

- 9.2(Mn) + 74(Mo) + 11(Si), (2)

where elements are in weight percent, and wear is in cubic millimeters. The numerical values of the coefficients in equation 2 and subsequent equations should not be considered exact, but they show that increasing hardness, carbon, and manganese decreases the wear of low-alloy steels. Excluding any effect of Mo and Si on hardness through heat treatment, Mo and Si increase wear. The correlation of the data with equation 2 was 0.89.

To demonstrate the effects of significant wear factors, the data were fit to a higher order equation using the two most significant factors identified by MLR analysis, namely, hardness and carbon. The equation used was

Wear =
$$A + Bx + Cx^{2} + Dx^{3}$$

+ $Ex + Fy^{2} + Cy^{3} + Hxy$ (3)

where X is Vickers hardness number,

Y is wt pct carbon,

and A, B, C, D, E, F, G, and H are coefficients.

After fitting the hardness and carbon data to equation 3, a pseudo-threedimensional graph was plotted (fig. 7).

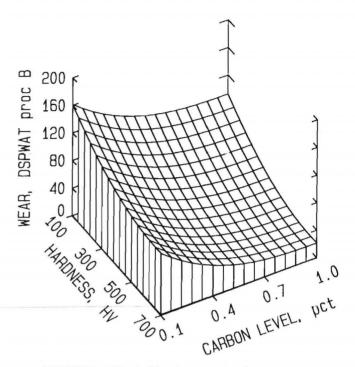


FIGURE 7.- Effect of hardness and carbon on wear.

This graph shows that increasing the hardness decreases the wear, and increasing the carbon content to 0.7 to 0.8 pct also results in a minimum in wear. The coefficient of determination fit of the data from all the specimens to this equation was 0.97.

The MLR program also was run with the data separated into two categories: hardened martensitic steels and nonhardened pearlitic and ferritic steels. Separate analysis of each category allowed the effects of structure and hardness to be separated from the effects of composition. Since the effect of hardness is well established, the hardness term was eliminated from these analyses.

ANALYSIS OF HARDENED STEELS

For the hardened steels, the best fit was found by using inverse carbon. There was very little difference between an inverse and square-root fit for carbon in equation 4. The difference was too slight to attribute to any physical meaning. For the MLR, the C and Mn were significant at the 99.5--pct confidence level and Si at the 95-pct level. None of the other alloy additions showed any significant effect. The multiple correlation fit of the hardened steels was 0.78. The equation predicting the wear rate for ASTM G65-81, procedure B, for hardened steels, is

Wear =
$$21 + 11(C)^{-1} - 7.1(Mn)$$

$$+ 8.5(Si),$$
 (4)

where elements are in weight percent, and wear is in cubic millimeters.

ANALYSIS OF UNHARDENED STEELS

For the unhardened steels, the best fit was found by using square root of carbon. Using MLR, carbon was found significant at the 99.5-pct confidence level, and Mn, S, and Mo at the 95-pct level. In this case, the multiple correlation fit was 0.85. The equation for wear for the unhardened steels is

Wear =
$$190 - 120(C)^{1/2} - 24(Mn)$$

- $500(S) + 95(Mo)$, (5)

where elements are in weight percent, and wear is in cubic millimeters.

For unhardened steel, carbon is useful in decreasing wear, probably by increasing the amount of work hardening that occurs during wear. Manganese also is useful, probably by hardening the ferrite. Sulfur, although not considered desirable, probably is a solid solution strengthener. Molybdenum increases the wear, possibly by combining with some of the carbon.

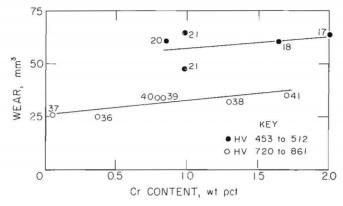


FIGURE 8.—Effect of chromium on wear resistance of hardened low-alloy steels.

EFFECT OF CHROMIUM

Because of the Bureau's concern for the supply and conservation of chromium in the United States, the effect of this element on wear is emphasized. The results from hypothesis testing, as shown in equation 2 for all the lowalloy steels, equation 4 for the hardened steels, and equation 5 for nonhardened steels, do not show chromium to be significant in affecting wear.

A simplified linear analysis of the effect of chromium on wear of hardened steels was made on two groups of specimens. The results can be interpreted from figure 8. Five samples (17, 18, 20-21) with moderate hardness, HV 453 to 512, and medium C, 0.23 to 0.33 wt pct, showed an increase in wear with up to 2 wt pct Cr. Six very hard samples (37-41), HV 720 to 861, containing 0.90 to 1.05 wt pct C, showed that Cr was deleterious because it increased the wear.

CONCLUSION

Steels with the least wear were found to be hardened high-carbon steels containing 0.55 to 1.0 wt pct C. These steels had enough alloying additions, 0.6 to 1.0 wt pct Mn, along with a sufficient carbon level, to provide full hardening in small specimens. Sulfur, in small amounts, also decreased the wear for the unhardened steels. Other alloy additions were not significant in reducing wear. The best steels tested were hardened experimental steels that fell within the specifications for AISI 1055 and 1078.

Carbon was found to reduce the wear of both hardened and nonhardened steels. Manganese decreased wear in all of the steels because it strengthens ferrite and increases the hardenability of the steels, thus reducing wear in hardened steels.

Other alloy additions may be useful for other purposes. A plain carbon steel has limited hardenability; therefore, additional alloying elements may be necessary to increase the depth of hardening. Chromium and molybdenum, despite being shown as generally detrimental to the wear resistance of steels, would probably be added in order to increase the hardenability.

Molybdenum and silicon were shown to increase wear. Molybdenum, being a carbide former, probably combines with carbon that might otherwise strengthen the steel. The reason that silicon increases abrasive wear of steel is still undetermined. This work suggests that the best abrasive wear resistance in a low-alloy steel is obtained by--

1. Making the steel as hard as practical.

2. Having a high carbon level, at least up to 0.7 to 0.8 wt pct. It increases hardness in hardened steels, and improves work hardening in nonhardened steels.

3. Using a fairly large amount of manganese. It is useful in reducing wear in nonhardened steels, within the limits tested of 0 to 2 wt pct Mn.

4. Adding other alloying elements to adjust other properties. For example, add Ni for toughness and Cr and Mo for hardenability.

REFERENCES

1. American Society for Testing and Materials. Standard Practice for Conducting Dry Sand/Rubber Wheel Abrasion Tests. G65-81 in 1984 Annual Book of ASTM Standards: Volume 03.02, Metals--Corrosion, Erosion, and Wear Testing. Philadelphia, PA, 1984, pp. 351-368.

2. Khrushchov, M. M. Resistance of Metals to Wear as Related to Hardness. Paper in Proceedings of Conference on Lubrication Wear, Inst. Mech. Eng., London, 1957, pp. 657-659.

3. Principles of Abrasive Wear. Wear, v. 28, 1974, pp. 69-88.

4. Larsen-Badse, J. The Abrasion Resistance of Some Hardened and Tempered Carbon Steels. Trans. Metall. Soc. AIME, v. 236, 1966, pp. 1461-1466.

5. Haworth, R. D. The Abrasion Resistance of Metals. Trans. ASM, v. 41, 1949, pp. 819-869.

6. Moore, M. A. The Relationship Between the Abrasive Wear Resistance, Hardness and Microstructure of Ferritic Materials. Wear, v. 28, 1974, pp. 59-68.

7. Grinberg, N. A., L. S. Livshits, and V. S. Shcherbakova. Effect of Alloying of Ferrite and Carbide Phase on the Wear Resistance of Steels. Metalloved. Term. Obrab. Met., No. 9, Sept. 1971, pp. 57-59.

8. Haynes, C, B. Welding of Wear Resistant Steels. Aust. Weld. J., v. 15, No. 1, 1971, pp. 31-38.

9. Alloy Digest. Engineering Alloys Digest, Inc., Upper Montclair, NJ, 1952-84, pp. CS 1-SA 403.

10. American Society for Testing and Materials. Standard Hardness Conversion Tables for Metals. E140-79 in 1982 Annual Book of ASTM Standards: Volume 03.01, Metals--Mechanical Testing; Elevated and Low Temperature Tests. Philadelphia, PA, 1984, pp. 298-314.

11. Snedecor, G. W., and W. G. Cochran. Statistical Methods. IA State Univ. Press, 1980, 507 pp.

12. Schwefel, H. Numerical Optimization of Computer Models. Wiley, 1981, 279 pp.

13. Hendrix, C. Through the Response Surface With Test Tube and Pipe Wrench. Chemtech, Aug. 1980, pp. 488-497.

APPENDIX A

				Meas	ured	
Sample	Alloy	Condition	Heat treatment and temperature	hard	parenal portat	Structure
				Surface	In scar	
1	Ferro Vac, E	R	As received	HRA22	NA	Ferrite.
2	Cor 99	R	do	HRA34	HRA33	Ferrite, grain size 7.
3	Experimental steel	R	1,100° C working temp	HRA41	NA	Fine ferrite and a little pearlite.
4	do	R	do	HRA42	HRA42	Fine ferrite and 10 pct pearlite.
5	do	R	do	HRA54	NA	Ferrite and 10 pct pearlite.
6	do	R	do	HRA51	NA	Ferrite and some pearlite.
7	AISI 1018	R	As received	HRB76	NA	Ferrite and pearlite, grain size 8 to 9.
8	AISI 4620	R	1,100° C rolling temp	HRA55.5	NA	NA.
	Therefore and the strength is striked to be define the	А	Heat to 840° C; hold for 3 h; furnace cool	HRA46	NA	NA.
1		WQ	Heat to 840° C; WQ	HRC43	HRC44	Martensite.
9	USS "T1"	RQ	As received	HRA61	NA	NA.
		WO	Heat to 900° C; WQ	HRC45	HRC43	NA.
10	USS "T1", Type B	RO	As received	HRA46	HRA64	Unresolved.
	···· ·· , -···	WQ	Heat to 900° C; WQ	HRC45	HRC43	NA.
11	Experimental steel	R	1,100° C working temp	HRA68	NA	NA.
		WQ, T	Heat to 900° C; WQ; temper at 200° C	HRC46	HRC46	Martensite.
12	AISI 8620	A A	NA	HRA45	HRA46	
		R	As received	HRC53	HRC53	Ferrite and pearlite, grain size 8.
1		WO	Heat to 860° C; WQ	HRC44	HRC44	Bainite and ferrite, grain size 7.
13	Experimental steel	R	1,100° C working temp.	HRA67	NA	Fine martensite. NA.
	mportmonicul occer	WQ, T	Heat to 700° C; WQ; temper at 150° C	HRC43		
		", 1	Leat to 700 C, wy, temper at 150 C	nRC43	HRC44	0.005-in layer of ferrite plus fine martensite and
14	do	R	1 100° C marking tons	TIDA (D	170 1 / 0	10 pct ferrite.
15	do	R	1,100° C working tempdo.	HRA48	HRA49	Fine ferrite and 10 pct pearlite.
16	do	R	do	HRA56	HRA56	Fine ferrite and 15 pct pearlite.
10		WQ, T	do Heat to 900° C; WQ; temper at 200° C for 1 h	HRA53	NA	NA.
17	do	WQ, I R	1,100° C working temp	HRC44	HRC43	Martensite.
		WQ	Hast to 000% do No	HRA66	NA	Bainite and ferrite.
19	do	wQ R	Heat to 900° C; WQ	HRC51	HRC47	Martensite.
10		WQ	1,150° C working temp	HRA70	HRA71	Fine ferrite and a 2d phase, possibly austenite.
19	do	WQ P.	Heat to 860° C; WQ	HRC50	HRC50	Martensite.
17			1,150° C working temp	HRA59	HRA58	Fine ferrite and 10 pct pearlite.
20	do	WQ	Heat to 950° C; WQ	HRC46	HRC48	Martensite, grain size 6.
20	•••••	R	1,100° C working temp	HRA59	NA	NA.
		WQ, T	Heat to 700° C; WQ; temper at 150° C	HRC47	HRC43	0.004-in layer of ferrite plus martensite and 15 pct
	DEN FOO					austenite.
21	REM 500	A	Heat to 730° C; hold 2.5 h; air cool	HRA54	NA	NA.
		RQ	As received	HRC50	NA	NA.
		WQ, T	Heat to 700° C; WQ; temper at 150° C	HRC50	HRC50	0.004-in layer of ferrite plus 2-phase unresolved
						mixture.
22	Experimental steel	R	NA	HRA49	HRA49	Ferrite and 40 pct pearlite.
		WQ	Heat to 860° C; WQ	HRC56	HRC55	NA.
	AISI 4340	R	As received	HRA53	NA	
23	ALD1 4040	K	Heat to 810° C; OQ.	I III III III III III III III III III	NA	Decomposed pearlite.

TABLE A-1. - Heat treatment and structure of test materials

Sample	A1101	Condition	YY	Measured		
ampre	Alloy	Condition	Heat treatment and temperature		ness	Structure
4	AISI 4342	R	Az		In scar	
	AIDI 4942	197020	As received	HRA55	NA	NA.
5	AISI 8740	WQ	Heat to 840° C; WQ	HRC57	NA	Martensite.
	AISI 0/40	A	Heat to 1,550° C; hold for 3 h; furnace cool	HRA52	NA	NA.
		R	1,100° C rolling temp	HRA61	NA	Bainite, grain size 7.
4	ATCT 12/0	WQ	Heat to 840° C; WQ	HRC55	HRC54	Fine martensite and 30 to 40 pct retained austenin
6	AISI 1340	R	As received	HRA63	HRA63	Unresolved pearlite and 5 pct ferrite.
7	ATOT /1/0	WQ	Heat to 820° C; WQ	HRC58	HRC56	Fine martensite.
7	AISI 4142	A	Heat to 820° C; furnace cool	HRA54	HRA54	Pearlite and ferrite, grain size 9.
		R	As received	HRA56	HRA56	Fine pearlite and spherical cementite in ferrite.
-		OQ, T	Heat to 860° C; OQ; temper at 200° C	HRC53	HRC53	Fine martensite.
8	Experimental steel	R	1,100° C working temp	HRA58	HRA59	Fine pearlite and 15 pct ferrite.
		WQ	Heat to 810° C; WQ	HRC58	HRC58	Fine martensite.
9	AISI 6150	A	Heat to 850° C; hold for 3 h; furnace cool	HRA56	HRA56	Pearlite.
		R	1,000° C working temp	HRA67	HRA68	Bainite.
		OQ, T	Heat to 860° C; OQ; temper at 150° C	HRC55	HRC58	Martensite and some bainite.
0	Experimental steel	R	1,100° C working temp	HRA59	HRA59	Pearlite.
		WQ	Heat to 850° C; WQ	HRC62	HRC60	Martensite.
1	AISI 1060	A	Heat to 840° C; hold for 3 h; furnace cool	HRA53	HRA54	
		R	As received	HRA59	HRA60	Pearlite and ferrite, grain size 8.
		WO	Heat to 820° C; WQ	HRC61	HRC59	Pearlite and ferrite, grain size 7.
2	Experimental steel	R	1,100° C working temp	and the second second		Martensite and some pearlite.
		WO	Heat to 860° C; WQ	HRA53	HRA53	Pearlite and 30 pct ferrite.
3	AISI 5160	A	Heat to 820° C; furnace cool.	HRC65	HRC41	Fine martensite.
		R	As received	HRA57	HRA58	Fine pearlite.
		WO	Heat to 860° C; WQ	HRA66	HRA66	Pearlite, grain size 8.
4	Omegalloy 61	RQ	As reactived	HRC61	HRC59	Martensite.
5	Experimental steel	R	As received.	HRC65	HRC63	Martensite, grain size 4.
	asperimentar steer	WO	1,100° C working temp	HRA66	NA	Pearlite.
6	do	R	Heat to 850° C; WQ	HRC66	HRC64	Martensite.
	•••••	1000	1,100° C working temp	HRA60	NA	Pearlite.
7	do	oq	Heat to 850° C; OQ	HRC65	HRC63	Martensite.
	••••00•••••••••••	R	1,100° C working temp	HRA60	HRA61	Pearlite.
8	do	WQ	Heat to 810° C; WQ	HRC66	HRC65	Martensite and some pearlite.
		R	1,150° C working temp	HRC40	HRC39	Pearlite.
9	do	OQ, T	Heat to 860° C; OQ; temper at 150° C	HRC65	HRC64	Martensite and some fine, round carbides.
		R	1,100° C working temp	HRA66	NA	Pearlite.
0	1.	0Q, T	Heat to 860° C; OQ; temper at 150° C	HRC63	HRC62	Fine martensite and a little pearlite.
J	do	R	1,050° C working temp	HRC36	HRC35	Pearlite.
		OQ, T	Heat to 860° C; OQ; temper at 150° C	HRC63	HRC62	Martensite.
1	AISI 52100	A	Heat to 780° C; hold for 3 h; air cool	HRA55	NA	Decomposed pearlite.
		R	1,000° C working temp	HRA67	HRA68	Fine grain pearlite and maybe graphite.
	and a second	OQ, T	Heat to 790° C; 00; temper at 200° C.	HRC61	NA	Martensite and some round carbides,
2	W1	R	As received	HRA51	HRA51	Spherodite.
		A	Heat to 820° C	HRA54	HRA52	
		WQ	Heat to 860° C; WQ	HRC64	HRC64	Ferrite and small, round cementite.
3	Experimental steel	R	1,100° C working temp; soak after 16 h	HRA66	HRA66	Martensite and some cementite.
		WO	Heat to 800° C; hold for 20 min; WQ	HRC67	HRC64	NA ,

TABLE A-1. - Heat treatment and structure of test materials--Continued

NA Not available.

NOTE.--A Annealed.

OQ Oil quenched.

WQ Water quenched. R Hot rolled (assumed for purchased commercial steels). T Tempered.

The self-directing optimization (SDO) technique was used for the optimization. In this technique, a simplex is created that continually directs itself toward an optimal composition. To do the optimization, you first need n + 1 tests, one more test than the number of independent components that you are trying to optimize. The composition of the new material to test is calculated by the rule: Twice the average of the "n" best points minus the worst point, for each independent component. The data for the material with the worst test results are now eliminated. A test is now done with the new composition. You now have n + 1 test again, so the next optimized composition can be calculated with the new best "n" test materials minus the worst of this group. This can be repeated until there is no improvement through several optimization runs, or until time or money runs out.

An example of this SDO technique based on data from this report follows. Using just four independent variables, C, Cr, Mn, and Mo, it will be shown how the composition of an unhardened steel can be optimized. First five abrasion tests are run, letters A-E. The composition of the alloy was then set up as a matrix shown in table A-1. The composition for the new alloy is calculated using the rule of twice the average of all but the worst point, minus the worst point.

TABLE	B-1.	-	Example	data	for	self-
dire	ected	op	otimizati	lon		

Analysis, wt pct				Wear,
С	Cr	Mn	Mo	mm^3
-01-8-	-0.08-	-0-43-	-0.04-	- 121
.20	.43	.67	.13	114
.40	.79	.71	.27	113
.44	1.05	.83	.12	86.7
1.07	.05	.30	.05	99.9
.53	.58	.74	.14	NAp
1.06	1.16	1.47	.28	NAp
.18	.08	.43	.04	NAp
.88	1.08	1.04	.25	(83)
	C -018 .20 .40 .44 1.07 .53 1.06 .18	C Cr -018 0.08 .20 .43 .40 .79 .44 1.05 1.07 .05 .53 .58 1.06 1.16 .18 .08	C Cr Mn -0.18 0.08 0.43 .67 .20 .43 .67 .40 .79 .71 .44 1.05 .83 1.07 .05 .30 .53 .58 .74 1.06 1.16 1.47 .18 .08 .43	C Cr Mn Mo -018 0.08 0.43 0.04 .20 .43 .67 .13 .40 .79 .71 .27 .44 1.05 .83 .12 1.07 .05 .30 .05 .53 .58 .74 .14 1.06 1.16 1.47 .28 .18 .08 .43 .04

NAp Not applicable.

New alloy, F, is obtained for the next test. After conducting the wear test on this alloy, we see that some improvement has taken place. Using this specimen in the set of data and eliminating A, the optimization procedure is repeated in table B-2. TABLE B-2. - Second iteration from sample optimization example

	Analysis, wt pct				Wear,
	С	Cr	Min	Mo	mm ³
Alloy:					
B	-0-20-	0.43	0.67	-0-1 3 -	++1+
C	.40	.79	.71	.27	113
D	.44	1.05	.83	.12	86.7
Ε	1.07	.05	.30	.05	99.9
F	.88	1.08	1.04	.25	83
Av	.70	.74	.72	.17	NAp
2X (Av).	1.40	1.48	1.44	.35	NAp
Less					
alloy B	.20	.43	.67	.13	NAp
New alloy, G	1.20	1.92	.77	.22	39
NAp Not appl	icable	2.			

With the result from this step, alloy G, an alloy with considerably higher chromium, is made and tested. The wear in this case is considerably better, at 39. Going through the optimization one more time, with alloy G in the new set of data and B removed is shown in table B-3.

TABLE B-3. - Third iteration from sample optimization example

	Analysis, wt pct				Wear,
	С	Cr	Mn	Mo	mm^3
Alloy:					
C	-0.40	0.79	-0.7-1-	0.27	- 1 13
D	.44	1.05	.83	.12	86.7
Ε	1.07	.05	.30	.05	99.9
F	.88	1.08	1.04	.25	83
G	1.20	1.92	.77	.22	39
Av	.90	1.03	.74	.16	NAp
2X (Av).	1.80	2.05	1.47	.32	NAp
Less					
alloy C	.40	.79	.71	.27	NAp
New alloy, H	1.40	1.26	.76	.05	32

NAp Not applicable.

This technique does not promise improvement each time, but the new alloy should be better than the alloy eliminated, and the trend should be toward an optimum alloy.

14